
Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 1

Service Mesh: Architectures, Applications,
and Implementations

Behrooz Farkiani (A paper written under the guidance of Prof. Raj Jain) Download

Abstract
The scalability and flexibility of microservice architecture have led to major changes in cloud-
native application architectures. However, the complexity of managing thousands of small services
written in different languages and handling the exchange of data between them have caused
significant management challenges. Service mesh is a promising solution that could mitigate these
problems by introducing an overlay layer on top of the services. In this paper, we first study the
architecture and components of service mesh architecture. Then, we review two important service
mesh implementations and discuss how the service mesh could be helpful in other areas, including
5G.

Keywords
Service Mesh, Cloud Native Application, Container, Kubernetes, Istio, Linkerd, 5G.

Table of Contents
1. Introduction
2. Service Mesh

• 2.1. Background
• 2.2. Architecture
• 2.3. Performance Impact
• 2.4. Business Importance
• 2.5. Applications
• 2.6. Summary

3. Implementations

• 3.1. Istio
• 3.2. Linkerd
• 3.3. Comparison of Implementations
• 3.4. Summary

4. Summary

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html
http://www.cse.wustl.edu/%7Ejain/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 2

5. List of Acronyms
6. References

1. Introduction
A service mesh is a dedicated overlay layer on top of (micro) services that handles service-to-
service communication. The main goal of the service mesh is the reliable delivery of requests
through the topology of services. Although there is no official standard architecture of the service
mesh concept and its components, researchers defined and proposed its components in both control
and data planes. There are also two important implementations: Istio and Linkerd. We discuss
these implementations and how service mesh could benefit other computing areas.

The structure of this paper is as follows. Section 2 briefly reviews the general components of
service mesh architecture. We also review how the service mesh could be utilized in edge
computing and Fifth-generation cellular technology (5G). Then, we discuss two important service
mesh implementations named Istio and Linkerd and compare them with other implementations in
Section 3. Finally, Section 4 concludes this paper.

2. Service Mesh
A cloud-native application might consist of several (micro)services that might be implemented in
different programming languages, belong to different tenants, and have many service instances
with a short lifetime to support traffic demands. It is the job of the service orchestrator component
to manage this dynamic environment, manage and debug their interactions with each other and
traffic flow, monitor their performance, and collect statistics related to the service [Li19][Redhat].
However, with a large number of services, efficiently performing these tasks becomes challenging.

Service mesh was introduced to mitigate the difficulty of performing the aforementioned tasks. In
general, a service mesh implementation should provide the following features [Khatri20] [Li19]:

• Observability: The control should provide the observability of services running in the data
plane. This could be done through distributed tracing [Cha21].

• Automatic scaling: The control plane services should automatically scale to handle the
increased workload.

• Routing: The service mesh should manage the traffic routing rules between services
running in the data plane and provide reliable delivery of messages. It should also use the
gathered statistics to balance the load between different instances.

• Automatic service registration and discovery: In microservice applications, the number of
service instances, their location, and their states are dynamically changing. The control
plane should have the ability of automatic service discovery.

• Circuit breaking: in case of overloaded services, the circuit breaking feature should back
off requests instead of allowing a wide system failure.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 3

• Authentication and access control: A service mesh implementation should enforce service-
to-service access policies.

In the rest of this section, we first review the background concepts. Then, we introduce a general
service mesh architecture and continue to discuss the performance impact of implementing a
service mesh. Finally, we discuss its business importance and the applications of service mesh in
5G and edge computing.

2.1. Background

This section explains the important concepts that will be used in the rest of this paper. Here, we
review the evolution of software architecture, cloud-native applications, and service mesh
definition.

2.1.1. The Evolution of Software Architecture

In recent years, we have witnessed a shift from monolithic applications architecture to service-
oriented and microservice architecture. In monolithic architecture, all components of the
application are tightly coupled together. As another approach, we could define and design services
and break down the entire application into a set of services, each providing a business function;
one of the main important features of service-oriented architecture is the loose coupling between
service consumers and providers. These services could be developed, deployed, scaled, and
administrated independently, and they have little or no knowledge of each other or any integration.
Figure 1 and Figure 2 represent examples of monolithic and service-oriented architectures,
respectively.

Figure 1- Monolithic Applications [Khatri20]

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 4

Figure 2- Service Oriented Architecture [Khatri20]

Microservice architecture is still a service-oriented architecture; it is made of reusable, loosely
coupled (relatively small) components that work independently of each other. However, the main
difference between these two architectures resides in their scopes: in service-oriented architecture,
we focus on an enterprise scope, while in a microservice architecture, the focus is on the
application level [IBM]. Figure 3 explains this difference.

Figure 3- Service oriented vs. microservice architecture [IBM]

Other differences stem from this fact. Service-oriented architecture has a higher level of reuse and
a lower level of data synchronization. Indeed, service-oriented architecture needs reuse and
component sharing to achieve its scalability and efficiency goals. In addition, data is usually
accessed and modified at its main source, which reduces the need for synchronization. On the other
hand, reuse in microservice architecture leads to some level of dependency, which reduces agility
and resilience. Therefore, we witness duplication of services. More importantly, each microservice
has its own local copy of the data it needs. Two main advantages of microservice architecture are
rapid development and a higher level of scalability in comparison to service-oriented architecture.
An example of microservice architecture is shown in Figure 4.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 5

Figure 4- Microservice architecture [Khatri20]

2.1.2. Cloud-Native Applications

Another important concept is cloud-native applications, which has recently been used to describe
container-based environments. Cloud-native applications usually refer to applications in which
software development is a relatively rapid process because of the automated scalability and
deployment process. An example of cloud-native applications is shown in Figure 5 [Khatri20].

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 6

Figure 5- Cloud Native Application [Khatri20]

Cloud-native applications and microservice architecture usually benefit from containerized
environments and run their services in containers. A container is a unit of software that packages
up the code and all its dependencies. It enables us to move the application from one computing
environment to another one and to run the application quickly and reliably [Docker]. We could
create a container image that includes the program and its dependencies. A container runtime, like
Docker, provides an environment to execute dockers on the host operating system. Containers are
lighter than virtual machines and provide less isolation in comparison to them. In addition, in large
production environments, we need a container orchestration platform to manage the life cycle of
containers. Kubernetes [Kubernetes] is a very popular orchestration system that is widely used in
the current implementation of service mesh architecture as the container orchestration platform.

2.1.3. Envoy

Envoy is a layer-7 proxy and communication bus designed for large modern service-oriented
architectures. Envoy can shape, shift, split, route traffic, and collect telemetry for all service calls.
Envoy proxy is transparent to applications and provides the following features [Khatri20] [Envoy]
:

• Out-of-process architecture: This feature is also known as the sidecar proxy. It means
that the Envoy proxy runs alongside the application and is language-agnostic.

• Layer-3/Layer-4 filter: At its core, Envoy is also an L3/L4 network proxy that provides a
pluggable filter chain mechanism.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 7

• HTTP layer-7 filter: There is an Hyper Text Transfer Protocol (HTTP) Layer-7 filter that
supports buffering, rate limiting, and routing/forwarding.

• HTTP/2 support: Envoy supports both HTTP 1.1 and 2, and it can operate as a transparent
HTTP/1.1 to HTTP/2 proxy in both directions.

• HTTP layer-7 routing: Envoy supports a routing subsystem that can route requests based
on path, authority, content type, and runtime values.

• gRPC support: Google Remote Procedure Call (gRPC) is an RPC framework that uses
HTTP/2. Envoy supports routing and load balancing for gRPC requests and responses.

• Service discovery and dynamic configuration: Envoy provides an optional dynamic
configuration Application Programming Interface (API) for centralized management.

• Health checking: Envoy includes an active health-checking subsystem for upstream
services. Envoy uses the collected information to determine healthy targets for load
balancing.

• Advanced load balancing: Envoy is a self-contained proxy that could implement
advanced load balancing techniques. Currently, it supports circuit breaking, automatic
retries, global rate limiting, request shadowing, and outlier detection.

• Front/edge proxy support: Envoy's primary use is for service-to-service communication
as a sidecar proxy. However, it can also act like an edge proxy because it supports
HTTP/1.1, HTTP/2, HTTP/3, and HTTP layer-7 routing.

• Best in class observability: Envoy collects statistics for all subsystems.

2.2. Architecture

Service mesh is an application infrastructure layer on top of the microservice architecture that
manages microservice-to-microservice communication. As a layer, it has both control and data
planes. Service mesh is a concept, and there is no standard definition for it that specifies all its
requirements and components. In this section, we present its components that are generally
accepted and used in the research and software communities. Section 3 provides a detailed
description of popular implementations.

Figure 6 illustrates different components of the service mesh. The following general components
are suggested in each of the data and control planes.

• Data plane: The main data plane component is the "sidecar" proxy. These proxies are
deployed independently beside every service component and are invisible to the services
they are attached to. Through these proxies, the control plane could manage service mesh.

• Control plane: The control plane manages the configurations, policies, and management
services. The control plane also provides secure communication between microservices
through authentication and authorization services.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 8

Figure 6- Service Mesh Architecture [Li19]

2.3. Performance Impact

In service mesh, traffic passes through additional sidecar proxies. This will result in additional
end-to-end delay and reduces the performance. Authors of [Zhu22] designed a decomposition
approach and a tool named MeshInsight to measure service mesh overhead. They showed
implementing service mesh could result in 185% higher latency and 92% more virtual cores.

Figure 7 shows the data path for both inbound and outbound traffic. We could see there are three
separate connections: two between sidecar proxies and their microservices and one between
sidecar proxies. As a source of overhead, the message buffer should also be copied into the proxy
buffer and vice versa. In addition, there are additional system calls, and the sidecar may process
the message layers to do some actions. The authors also mentioned that protocol parsing is a major
source of overhead for HTTP and gRPC proxies.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 9

Figure 7- Service mesh proxy data path [Zhu22]

The authors of [Ganguli21] measured the performance impact of deploying service mesh in edge
environments. They deployed Kubernetes in a virtual machine environment instead of a
containerized environment. The authors showed that using Istio could reduce HTTP throughput
between virtual machines by up to 70% and could double the tail latency.

2.4. Business Importance

Gartner [Gartner] categorized service mesh as an adolescent technology with 1% to 5% market
penetration. It also categorized service mesh in the "Trough of Disillusionment" phase of the hype
cycle. This means that the producers of the service mesh need to shake out or fail; they need to
improve their products to satisfy early adopters.

2.5. Applications

This section reviews the application of service mesh in other areas. For example, [XIE20] proposed
using Kubernetes and Istio for an on-demand image classification application to support load

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 10

balancing and scheduling. Here, we discuss how we could employ service mesh to improve 5G
network efficiency and how it could be used in resource-limited edge computing environments.

2.5.1. 5G

The authors of [Dab20] investigated the problem of steering traffic between microservice-based
network functions in 5G architecture. One way to achieve the requirements of 5G networks while
reducing the total operational costs is to use cloud-native applications. However, steering traffic
between network functions is challenging, and service mesh could help us to tackle this issue. The
authors proposed a cloud-native service function chaining framework based on Kubernetes and
Network Service Mesh [NSM]. Then, the authors formulated the network-aware load-balancing
optimization problem and proposed an algorithm to solve it.

[Wojciechowski21] proposed a scheduler for 5G networks by extending the Kubernetes scheduler
and utilizing information gathered by the Istio service mesh. The authors aimed to improve service
placement to reduce the latency. Their scheduler uses two metrics that are gathered by the service
mesh: the number of bytes that are transferred in requests and responses. The scheduler uses these
metrics to calculate the average flow between applications. Then, it could detect the nodes that
have the highest flow and collocate them.

2.5.2. Edge Computing

[Furusawa22] proposed a service mesh controller that balances the load between edge servers.
Usually, the service mesh is used in cloud environments. However, we could benefit from
deploying them in edge environments because of the limited computing resources of edge servers.
Consider a set of edge servers hosting applications that serve cars. In the case of car accidents and
traffic congestion, the requests to the servers that are located in the related geographical area
increase, and these servers become overloaded. In such cases, cooperative load balancing could be
beneficial to avoid edge server overloading. In cooperative load balancing, some requests are
redirected to other nearby servers. However, the current Kubernetes container execution
implementation lacks the feature of using geographical data that is essential to implement
cooperative load balancing. Therefore, the authors utilized Istio and proposed a weight calculation
algorithm that is used to forward traffic to other nearby edge servers. As a systematic review of
the challenges of implementing service mesh in edge environments, readers should consult
[Duque22].

2.6. Summary

We reviewed the shift in software architecture from the monolithic architecture to microservices.
Then, we discussed the main features of the service mesh, its performance impact, and its business
importance. While employing service mesh could ease the management of microservices, it also
could lead to significant performance degradation. As it is noted by [Sedghpour22], employing
eBPF for root cause analysis, high-performance monitoring, and management could significantly
improve the performance of service mesh implementations. We also reviewed the applications of
service mesh in 5G and edge computing.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 11

3. Implementations
Two important and widely used implementations of service mesh are Istio and Linkerd. In this
section, we discuss these implementations and their components. Then, we provide a table to
compare different service mesh implementations.

3.1. Istio

Istio service mesh, started in May 2017, is one of the fastest-growing open-source service mesh
projects. Istio extends Kubernetes and utilizes Envoy proxies to provide traffic management,
telemetry, and security [Istio].

Istio has a centralized control plane and supports integration with virtual machines and service
discovery through other third-party service catalogs. Istio uses Envoy as its sidecar proxy and
extends the Kubernetes API server for configuration management and access control. It also uses
Kubernetes' built-in datastore, called etcd, to store its state and configuration. A high-level view
of Istio architecture is shown in Figure 8 [Istio] [Khatri20].

Figure 8- Istio Architecture [Zhu22]

The Istio control plane has four main components:

• Gallet
• Pilot

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 12

• Mixer
• Citadel

3.1.1. Galley

Galley gathers and validates user configuration for the other parts of the system. Galley provides
configuration management services to different Istio components.

3.1.2. Pilot

Pilot is the traffic management component of Istio. It pushes communication-based policies to
sidecar proxies at runtime to enforce traffic management configurations. Pilot maintains an
abstract model of all of the services in the mesh that have been discovered through Kubernetes or
Gallery. The platform-specific adapters, such as Kubernetes, are used to populate the abstract
model with the service registry and resource information. Kubernetes stores the service discovery
metadata in the etcd database when we create Kubernetes services. Figure 9 illustrates the
components of Pilot.

Figure 9- The components of Pilot [Sharma19]

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 13

3.1.3. Mixer

Istio Mixer component is a general-purpose policy and telemetry hub. Mixer enables access control
and manages authorization and auditing, telemetry capturing, and quota enforcing. The
components of the Mixer are shown in Figure 10.

Figure 10- Mixer Components [Sharma19]

3.1.4. Citadel

Istio Citadel component enables service-to-service and end-user authentication and identity
management. The Istio security model is implemented through the following control plane
components:

• Citadel manages keys and certificates.
• Pilot distributes the authentication policies.
• Mixer provides authorization and auditing policies.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 14

3.2. Linkerd

Linkerd [Linkerd] advertises that it is the fastest and lightest implementation of the service mesh
on top of Kubernetes. Linkerd does not use Envoy. Instead, it uses its own lightweight layer-7
micro proxy named Linkerd2-proxy as the sidecar proxy. The proxy sits next to every
microservice, wraps the network call, and collects the metrics. Linkerd encrypts all service-to-
service communication through Transport Layer Security (TLS), and all the traffic on the wire is
also encrypted. Linkerd provides load balancing, TLS, request routing, and service scalability. A
high-level diagram of Linkerd architecture is shown in Figure 11 [Khatri20].

Figure 11- Linkerd Architecture [Khatri20]

The primary functions of the Linkerd control plane are telemetry data aggregation, service API
calls, and enabling data access between the control plane and service proxies. The control plane
has the following components:

• Identity: The identity component is a TLS certificate authority that manages keys for
proxy-to-proxy connections to implement Mutual TLS (mTLS).

• Destination: It is used to fetch service discovery information, policy information, and
service profile information.

• Prometheus: Stores metrics, telemetry, and monitoring data that have been captured by
Linkerd proxies and metrics that other Linkerd components have generated.

• Grafana: It integrates with Prometheus to visualize metrics that Prometheus has captured.
• Tap: Allows introspection of live traffic in real-time. Access to it is controlled using role-

based access control.

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 15

3.3. Comparison of Implementations

We use the table presented in [serviceComp] to compare the features of Istio [Istio], Linkerd
[Linkerd], Consul [Consul], Kuma [Kuma], and Open Service Mesh [OSM]. Table 1 describes
these differences.

Table 1- Comparison of different service mesh implementations [serviceComp]

Feature \
Implementatio
n

Istio Linkerd Consul Kuma Open Service Mesh

License Apache
License 2.0

Apache
License 2.0

Mozilla
License

Apache
License 2.0 Apache License 2.0

Service Proxy

Envoy,
proxyless for
gRPC
(experimental
)

Linkerd2-
proxy

defaults to
Envoy,
exchangeabl
e

Envoy Envoy

TCP Yes Yes Yes Yes Yes

HTTP/1.1+ Yes Yes Yes Yes Yes

HTTP/2 Yes Yes Yes Yes Yes

gRPC Yes Yes Yes Yes Yes

Automatic
Sidecar
Injection

Yes Yes Yes Yes Yes

Platform Kubernetes Kubernetes

Kubernetes,
Nomad, VMs,
ECS,
Lambda

Kubernetes
, VMs, ECS Kubernetes

Extension of
the Mesh by
containers/VM
s outside the
cluster

Yes No Yes Yes No

Control and
observe
multiple
clusters

Yes Yes Yes Yes planned

Traffic Access
Control Yes No Yes No Yes

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 16

Table 1- Comparison of different service mesh implementations [serviceComp]

Feature \
Implementatio
n

Istio Linkerd Consul Kuma Open Service Mesh

Traffic Split Yes Yes No No Yes

Traffic Metrics Yes Yes No No Yes

Service Log
Collection No No No No Yes, using Fluent Bit

Access Log
Generation Yes

No (tap
feature
instead)

Yes Yes No

Per-Route
Metrics experimental Yes

depending on
the proxy
used

No No

Load
Balancing

Yes (Round
Robin,
Random,
Weighted,
Least
Request)

Yes
(exponentiall
y weighted
moving
average)

Yes (Round
Robin,
Random,
Weighted,
Least
Request,
Ring Hash,
Maglev)

Yes (Round
Robin,
Least
Request,
Ring Hash,
Random,
Maglev)

Yes

Percentage-
based Traffic
Splits

Yes Yes Yes Yes Yes

Header- and
Path-based
Traffic Splits

Yes planned Yes Yes Header-based

Circuit
Breaking Yes No, planned

for 2.12.0 Yes Yes Yes

mTLS Yes Yes, on by
default Yes Yes Yes

mTLS
Enforcement Yes Yes Yes Yes

Yes, via
https://linkerd.io/2.11/features/serve
r-policy/

mTLS
Permissive
Mode

Yes Yes No Yes Yes

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 17

Table 1- Comparison of different service mesh implementations [serviceComp]

Feature \
Implementatio
n

Istio Linkerd Consul Kuma Open Service Mesh

mTLS by
default

Yes,
permissive
mode

Yes,
permissive
mode

Yes No Yes

Service-to-
Service
Authorization
Rules

Yes Yes Yes Yes Yes

3.4. Summary

In this section, we reviewed the popular service mesh implementations and their components.
Then, we provided a table that compares the different features of the five most important
implementations. It is clear that all of the reviewed service meshes rely on Kubernetes as the
orchestration framework. Therefore, any future implementation should also consider Kubernetes
as one of the candidates for the orchestration system.

4. Summary
In this paper, we reviewed the service mesh concept, its features, and its popular implementation.
We showed that implementing service mesh could ease service management and policy
enforcement and improve service observability. It also enables us to extend orchestration
framework capabilities without directly modifying its core code. However, it also results in
performance degradation that needs to be addressed. We also discussed the benefits of using
service mesh in 5G and edge environments.

It seems that current implementations of service mesh have reached a maturity level in terms of
features. Therefore, future research should focus on how we could improve the performance of the
implementations without limiting its functionality.

5. List of Acronyms

Table 2- List of acronyms

5G Fifth-generation technology standard for broadband cellular networks

HTTP Hypertext Transfer Protocol

TLS Transport Layer Security

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 18

Table 2- List of acronyms

5G Fifth-generation technology standard for broadband cellular networks

mTLS Mutual TLS

gRPC Google Remote Procedure Call

API Application Programming Interface

6. References
[Cha21] D. Cha and Y. Kim, "Service Mesh Based Distributed Tracing System," in International
Conference on Information and Communication Technology Convergence (ICTC), Oct. 2021,
pp. 1464-1466, https://ieeexplore.ieee.org/document/9620968

[Consul] "Multi-Platform Service Mesh with Consul." https://www.consul.io/use-cases/multi-
platform-service-mesh [Consul service mesh].

[Dab20] B. Dab, I. Fajjari, M. Rohon, C. Auboin, and A. Diquelou, "Cloud-native Service
Function Chaining for 5G based on Network Service Mesh," in IEEE International Conference
on Communications (ICC), Jun. 2020, pp. 1-7, https://ieeexplore.ieee.org/document/9149045

[Docker] "Docker: Accelerated, Containerized Application Development,"
https://www.docker.com/ [Docker project website].

[Duque22] A. O. Duque, C. Klein, J. Feng, X. Cai, B. Skubic, and E. Elmroth, "A Qualitative
Evaluation of Service Mesh-based Traffic Management for Mobile Edge Cloud," in 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing (CCGrid), May 2022, pp.
210-219, https://doi.ieeecomputersociety.org/10.1109/CCGrid54584.2022.00030

[Envoy] "What is Envoy"
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy[Description of Envoy's
features].

[Furusawa22] T. Furusawa, H. Abe, K. Okada, and A. Nakao, "Service Mesh Controller for
Cooperative Load Balancing among Neighboring Edge Servers," in IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), Jul. 2022, pp. 1-6,
https://ieeexplore.ieee.org/document/9820181

[Ganguli21] M. Ganguli, S. Ranganath, S. Ravisundar, A. Layek, D. Ilangovan, and E.
Verplanke, "Challenges and Opportunities in Performance Benchmarking of Service Mesh for
the Edge," in IEEE International Conference on Edge Computing (EDGE), Sep. 2021, pp. 78-85,
https://ieeexplore.ieee.org/document/9711981

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html
https://ieeexplore.ieee.org/document/9620968
https://www.consul.io/use-cases/multi-platform-service-mesh
https://www.consul.io/use-cases/multi-platform-service-mesh
https://ieeexplore.ieee.org/document/9149045
https://www.docker.com/
https://doi.ieeecomputersociety.org/10.1109/CCGrid54584.2022.00030
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://ieeexplore.ieee.org/document/9820181
https://ieeexplore.ieee.org/document/9711981

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 19

[Gartner] "Gartner: Hype Cycle for Enterprise Networking, 2022,"
https://www.gartner.com/document/4016160 [Gartner Report on Enterprise Networking explains
the importance of service mesh and its current maturity - requires login]

[IBM] "SOA vs. Microservices: What's the Difference?," https://www.ibm.com/cloud/blog/soa-
vs-microservices [Explains the difference between service oriented architecture and microserviec
architecture]

[Istio] "Istio," https://istio.io/latest/ [Istio service mesh].

[Khatri20] A. Khatri, V. Khatri, D. Nirmal, H. Pirahesh, and E. Herness, "Mastering Service
Mesh: Enhance, secure, and observe cloud-native applications with Istio, Linkerd, and Consul,"
1st edition. Packt Publishing, 2020, ISBN: 9781789615791

[Kubernetes] "Production-Grade Container Orchestration," https://kubernetes.io/ [Kubernetes is
an open-source system for automating deployment, scaling, and management of containerized
applications].

[Kuma] "Kuma," https://kuma.io/ [Kuma service mesh].

[Li19] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, "Service Mesh: Challenges, State of the
Art, and Future Research Opportunities," in IEEE International Conference on Service-Oriented
System Engineering (SOSE), Apr. 2019, pp. 122-1225,
https://ieeexplore.ieee.org/document/8705911

[Linkerd] "The world's lightest, fastest service mesh." https://linkerd.io/ [a popular
implementation of service mesh that claims to be the fastest]

[NSM] "Network Service Mesh." https://networkservicemesh.io/ [Network Service Mesh is a
Cloud Native Computing Foundation sandbox project that implements the service mesh
concept].

[OSM] "Open Service Mesh." https://openservicemesh.io/ [Open Service Mesh].

[RedHat] "What's a service mesh?" https://www.redhat.com/en/topics/microservices/what-is-a-
service-mesh [RedHat entry on service mesh explaining background concepts]

[Sedghpour22] M. R. S. Sedghpour and P. Townend, "Service Mesh and eBPF-Powered
Microservices: A Survey and Future Directions," in IEEE International Conference on Service-
Oriented System Engineering (SOSE), Aug. 2022, pp. 176-184,
https://ieeexplore.ieee.org/document/9912629

[serviceComp] "servicemesh.es." https://servicemesh.es/ [This website compares different
implementations of service mesh]

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html
https://www.gartner.com/document/4016160
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://istio.io/latest/
https://kubernetes.io/
https://kuma.io/
https://ieeexplore.ieee.org/document/8705911
https://linkerd.io/
https://networkservicemesh.io/
https://openservicemesh.io/
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://ieeexplore.ieee.org/document/9912629
https://servicemesh.es/

Service Mesh: Architectures, Applications, and Implementations

http://www.cse.wustl.edu/~jain/cse574-22/ftp/svc_mesh/index.html 20

[Sharma19] R. Sharma and A. Singh, "Getting Started with Istio Service Mesh: Manage
Microservices in Kubernetes," 1st ed. edition. Apress, 2019, ISBN:9781484254578

[Wojciechowski21] A . Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales, T.
Kim, and M. Hong "NetMARKS: Network Metrics-AwaRe Kubernetes Scheduler Powered by
Service Mesh," in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications,
May 2021, pp. 1-9, https://ieeexplore.ieee.org/document/9488670

[XIE20] X. XIE and S. S. Govardhan, "A Service Mesh-Based Load Balancing and Task
Scheduling System for Deep Learning Applications," in 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), May 2020, pp. 843-849,
https://ieeexplore.ieee.org/document/9139676

[Zhu22] X. Zhu, G.She, B. Xue, Y. Zhang, Y. Zhang, X. Zou, X. Duan, P. He, A.
Krishnamurthy, M. Lentz, D. Zhou, and R. Mahajan, "Dissecting Service Mesh Overheads."
arXiv, Jul. 02, 2022, https://arxiv.org/abs/2207.00592

Last modified on December 7, 2022
This and other papers on recent advances in Wireless and Mobile Networking are available
online at http://www.cse.wustl.edu/~jain/cse574-22/index.html
Back to Raj Jain's Home Page

http://www.cse.wustl.edu/%7Ejain/cse574-22/ftp/svc_mesh/index.html
https://ieeexplore.ieee.org/document/9488670
https://ieeexplore.ieee.org/document/9139676
https://arxiv.org/abs/2207.00592
http://www.cse.wustl.edu/%7Ejain/cse574-22/index.html
http://www.cse.wustl.edu/%7Ejain/index.html

	Service Mesh: Architectures, Applications, and Implementations
	Abstract
	Keywords
	Table of Contents
	1. Introduction
	2. Service Mesh
	2.1. Background
	2.1.1. The Evolution of Software Architecture
	2.1.2. Cloud-Native Applications
	2.1.3. Envoy

	2.2. Architecture
	2.3. Performance Impact
	2.4. Business Importance
	2.5. Applications
	2.5.1. 5G
	2.5.2. Edge Computing

	2.6. Summary

	3. Implementations
	3.1. Istio
	3.1.1. Galley
	3.1.2. Pilot
	3.1.3. Mixer
	3.1.4. Citadel

	3.2. Linkerd
	3.3. Comparison of Implementations
	3.4. Summary

	4. Summary
	5. List of Acronyms
	6. References

